

THE IDEAL SOLUTION FOR:

ELECTRICAL CHARACTERISTICS

PO	WER CLASS			365	370	375
MIN	IIMUM PERFORMANCE AT STANDAI	RD TEST CONDITIO	NS, STC¹ (POWE	ER TOLERANCE +5 W / -0 W)		
Minimum	Power at MPP¹	P _{MPP}	[W]	365	370	375
	Short Circuit Current ¹	I _{sc}	[A]	9.75	9.81	9.86
	Open Circuit Voltage ¹	V _{oc}	[V]	48.16	48.45	48.73
	Current at MPP	I _{MPP}	[A]	9.27	9.35	9.42
	Voltage at MPP	V_{MPP}	[V]	39.38	39.59	39.80
	Efficiency ¹	η	[%]	≥18.8	≥19.0	≥19.3
MIN	IIMUM PERFORMANCE AT NORMAL	OPERATING COND	DITIONS, NMOT	2		
Minimum	Power at MPP	P _{MPP}	[W]	272.3	276.1	279.8
	Short Circuit Current	I _{sc}	[A]	7.85	7.90	7.95
	Open Circuit Voltage	V _{oc}	[V]	45.32	45.59	45.87
	Current at MPP	I _{MPP}	[A]	7.29	7.36	7.42
	Voltage at MPP	V _{MPP}	[V]	37.34	37.52	37.70

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{W/m}^{2}, 25 \pm 2^{\circ}\text{C}, \text{AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \bullet ^{2}\text{800 W/m}$

Q CELLS PERFORMANCE WARRANTY

The state of the standard for linear warranties of CELLS To CELLS

At least 97% of nominal power during first year. Thereafter max. 0.6% degradation per year. At least 92.0% of nominal power up to 10 years. At least 83.0% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}$ C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.28
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.39	Normal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\scriptsize SYS}$	[V]	1500	Safety Class	II
Maximum Reverse Current	I _R	[A]	20	Fire Rating	С
Max. Design Load, Push / Pull		[Pa]	3600/1600	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/2400	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

IEC 61215:2016; IEC 61730:2016, Application Class II; This data sheet complies with DIN EN 50380.

Number of Modules per Pallet	30
Number of Pallets per 40' HC-Container (26t)	22
Pallet Dimensions (L × W × H)	2010 × 1130 × 1160 mm
Pallet Weight	726kg

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in China

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/australia | TeL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/australia | TeL +61 (0)2 9016 3033 | TeX +61 (0)2 9016 3032 | TeX +61 (0)2 901

